Paper Reference(s)

## 6684/01 Edexcel GCE

## **Statistics S2**

## **Advanced Level**

### Monday 11 June 2007 – Afternoon

## Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Green) **Items included with question papers** Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

#### **Instructions to Candidates**

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

#### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 8 questions. The total mark for this paper is 75.

#### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

N26119A This publication may only be reproduced in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited

- A string *AB* of length 5 cm is cut, in a random place *C*, into two pieces. The random variable *X* is the length of *AC*.
   (*a*) Write down the name of the probability distribution of *X* and sketch the graph of its probability density function.
   (*b*) Find the values of E(*X*) and Var(*X*).
   (*c*) Find P(*X* > 3).
   (*d*) Write down the probability that *AC* is 3 cm long.
   (1)
- 2. Bacteria are randomly distributed in a river at a rate of 5 per litre of water. A new factory opens and a scientist claims it is polluting the river with bacteria. He takes a sample of 0.5 litres of water from the river near the factory and finds that it contains 7 bacteria. Stating your hypotheses clearly test, at the 5% level of significance, the claim of the scientist.

(7)

- **3.** An engineering company manufactures an electronic component. At the end of the manufacturing process, each component is checked to see if it is faulty. Faulty components are detected at a rate of 1.5 per hour.
  - (a) Suggest a suitable model for the number of faulty components detected per hour.

(1)

- (b) Describe, in the context of this question, two assumptions you have made in part (a) for this model to be suitable.
- (c) Find the probability of 2 faulty components being detected in a 1 hour period.
- (2)

(2)

(d) Find the probability of at least one faulty component being detected in a 3 hour period.

(3)

4. A bag contains a large number of coins:

75% are 10p coins,

25% are 5p coins.

A random sample of 3 coins is drawn from the bag.

Find the sampling distribution for the median of the values of the 3 selected coins.

(7)

5. (a) Write down the conditions under which the Poisson distribution may be used as an approximation to the Binomial distribution.

(2)

(2)

(3)

A call centre routes incoming telephone calls to agents who have specialist knowledge to deal with the call. The probability of the caller being connected to the wrong agent is 0.01.

- (b) Find the probability that 2 consecutive calls will be connected to the wrong agent.
- (c) Find the probability that more than 1 call in 5 consecutive calls are connected to the wrong agent.

The call centre receives 1000 calls each day.

(d) Find the mean and variance of the number of wrongly connected calls.

(3)

(e) Use a Poisson approximation to find, to 3 decimal places, the probability that more than 6 calls each day are connected to the wrong agent.

(2)

6. Linda regularly takes a taxi to work five times a week. Over a long period of time she finds the taxi is late once a week. The taxi firm changes her driver and Linda thinks the taxi is late more often. In the first week, with the new driver, the taxi is late 3 times. You may assume that the number of times a taxi is late in a week has a Binomial distribution.

Test, at the 5% level of significance, whether or not there is evidence of an increase in the proportion of times the taxi is late. State your hypotheses clearly.

(7)

- 7. (a) (i) Write down two conditions for  $X \sim Bin(n, p)$  to be approximated by a normal distribution  $Y \sim N(\mu, \sigma^2)$ .
  - (ii) Write down the mean and variance of this normal approximation in terms of *n* and *p*.

A factory manufactures 2000 DVDs every day. It is known that 3% of DVDs are faulty.

(b) Using a normal approximation, estimate the probability that at least 40 faulty DVDs are produced in one day.

The quality control system in the factory identifies and destroys every faulty DVD at the end of the manufacturing process. It costs  $\pm 0.70$  to manufacture a DVD and the factory sells non-faulty DVDs for  $\pm 11$ .

(c) Find the expected profit made by the factory per day.

(3)

(3)

(2)

(2)

(5)

8. The continuous random variable *X* has probability density function given by

$$f(x) = \begin{cases} \frac{1}{6}x & 0 < x \le 3\\ 2 - \frac{1}{2}x & 3 < x < 4\\ 0 & \text{otherwise} \end{cases}$$

(*a*) Sketch the probability density function of *X*.

(b) Find the mode of X.
(c) Specify fully the cumulative distribution function of X.
(d) Using your answer to part (c), find the median of X.

#### **TOTAL FOR PAPER: 75 MARKS**

# edexcel

#### June 2007 6684 Statistics S2 Mark Scheme

| Question<br>Number | Scheme                                                                                                                    | Marks     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|
| 1(a)               | Continuous uniform distribution or rectangular distribution.                                                              | B1        |
|                    | $f(x)$ $\frac{1}{5}$ 0 may be implied by start at y axis                                                                  | B1        |
|                    | $0 \qquad 5 \qquad x \qquad$                                                                                              | B1 (3)    |
| (b)                | E(X) = 2.5 ft from their a and b, must be a number                                                                        | B1ft      |
|                    | $Var(X) = \frac{1}{12}(5-0)^2 \qquad \text{or attempt to use } \int_0^5 f(x)x^2 dx - \mu^2 \qquad \text{use their } f(x)$ | M1        |
|                    | $=\frac{25}{12}$ or 2.08 o.e awrt 2.08                                                                                    | A1        |
|                    |                                                                                                                           | (3)       |
| (C)                | $P(X > 3) = \frac{2}{5} = 0.4$ 2 times their 1/5 from diagram                                                             | B1ft (1)  |
| (d)                | P(X=3)=0                                                                                                                  | B1 (1)    |
|                    |                                                                                                                           | (Total 8) |
|                    |                                                                                                                           |           |
|                    |                                                                                                                           |           |
|                    |                                                                                                                           |           |
|                    |                                                                                                                           |           |

| Question<br>Number |                                                                                                                                    | Scheme                                                                                 |                                                 | Marks          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| 2                  | $\frac{\text{One tail test}}{\text{Method 1}}$ $H_{o}: \lambda = 5 \ (\lambda = 2.5)$ $\mu$ $H_{1}: \lambda > 5 \ (\lambda > 2.5)$ |                                                                                        | may use $\lambda$ or                            | B1<br>B1<br>M1 |
|                    | $X \sim \text{Po} (2.5)$<br>P( $X \ge 7$ ) = 1 - P( $X \le 6$ )<br>= 1 - 0.9858                                                    | $[P(X \ge 5) = 1 - 0.8912 = 0.1088]$ $P(X \ge 6) = 1 - 0.9580 = 0.0420$                | may be implied<br>att $P(X \ge 7)   P(X \ge 6)$ | M1             |
|                    | = 0.0142                                                                                                                           | $\operatorname{CR} X \ge 6$                                                            | awrt 0.0142                                     | Al<br>Ml       |
|                    | 0.0142 < 0.05<br>(Reject H <sub>0</sub> .) There is signific                                                                       | $7 \ge 6$ or 7 is in critical region or 7 is<br>cant evidence at the 5% significance 1 | significant evel that the factory               | B1             |
| -                  | is polluting the river with ba<br>or<br>The scientists claim is justifi                                                            | cteria.                                                                                |                                                 | (7)<br>Total 7 |
|                    | $\frac{\text{Method } 2}{\text{H}_{\text{o}}: \lambda = 5} (\lambda = 2.5)$ $\text{H}_{1}: \lambda > 5 (\lambda > 2.5)$            |                                                                                        | may use $\lambda$ or $\mu$                      | B1<br>B1       |
|                    | <i>X</i> ~ Po (2.5)                                                                                                                |                                                                                        | may be implied                                  | MI             |
|                    | P(X < 7)                                                                                                                           | [P(X < 5) = 0.8912]<br>P(X < 6) = 0.9580                                               | att P(X < 7) $P(X < 6)$                         |                |
|                    | = 0.9858                                                                                                                           | $\operatorname{CR} X \ge 6$                                                            | wrt 0.986                                       | M1 A1          |
|                    | 0.9858 > 0.95                                                                                                                      | $7 \ge 6$ or 7 is in critical region or 7 is                                           | significant                                     | MI<br>D1       |
|                    | (Reject H <sub>0</sub> .) There is signific<br>is polluting the river with ba<br><u>or</u><br>The acienticta claim is justifi      | cant evidence at the 5% significance l cteria.                                         | evel that the factory                           | (7)            |
|                    | The scientists claim is justifi                                                                                                    | ea                                                                                     |                                                 |                |
|                    |                                                                                                                                    |                                                                                        |                                                 |                |
|                    |                                                                                                                                    |                                                                                        |                                                 |                |
|                    |                                                                                                                                    |                                                                                        |                                                 |                |

| Two tail test<br>Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |               |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------|---|
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | B1            |   |
| $H_{o}: \lambda = 5 \ (\lambda = 2.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | may use $\lambda$ or $\mu$                                                                           | B0            |   |
| $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | M1            |   |
| <i>X</i> ~ Po (2.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |               |   |
| $P(X \ge 7) = 1 - P(X \le 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} P(X \ge 6) = 1 - 0.9580 = 0.0420 \end{bmatrix} \text{ att } P(X \ge 7)  P(X \ge 7)$ | M1            |   |
| - 1 - 0.9838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P(X \ge 7) - 1 - 0.9838 - 0.0142$                                                                   | A 1           |   |
| = 0.0142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $CR X \ge 7 \qquad awrt \ 0.0142$                                                                    | AI            |   |
| 0.0142 < 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7 \ge 7$ or 7 is in critical region or 7 is significant                                             | M1            |   |
| (Deinst II.) There is similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | B1            |   |
| is polluting the river with b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acteria.                                                                                             |               |   |
| or<br>The second se |                                                                                                      |               |   |
| The scientists claim is justif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fied                                                                                                 |               |   |
| Mathad 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | R1            | _ |
| $\frac{1}{H_0} : \lambda = 5 \ (\lambda = 2.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | may use $\lambda$ or $\mu$                                                                           | BO            |   |
| $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | N/1           |   |
| <i>X</i> ~ Po (2.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | 1 <b>VI</b> 1 |   |
| P(X < 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{bmatrix} P(X < 6) = 0.9580 \end{bmatrix} \text{ att } P(X < 7) = 0.9858$                     |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | M1A1          |   |
| = 0.9858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\operatorname{CR} X \ge 7 \qquad  \operatorname{awrt} 0.986$                                        | 1.01          |   |
| 0.9858 > 0.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7 \ge 7$ or 7 is in critical region or 7 is significant                                             | MI            |   |
| (Reject H.) There is signif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                    | B1            |   |
| is polluting the river with b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | acteria <u>.</u>                                                                                     |               |   |
| <u>or</u><br>The asigntists shi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gad                                                                                                  |               |   |
| i ne scientists claim is justi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nea                                                                                                  |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |               |   |

| Question<br>Number | Scheme                                                                                                                                                           |          | Marks   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| 3(a)               | $X \sim Po(1.5)$ need Po and 1.5                                                                                                                                 | B1       | (1)     |
| (b)                | Faulty components occur at a constant rate.any two of the 3Faulty components occur independently or randomly.only need faultyFaulty components occur singly.once | B1<br>B1 | (2)     |
| (C)                | $P(X=2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$                                                                                                | M1       |         |
|                    | = 0.8088 - 0.5578                                                                                                                                                |          |         |
|                    | = 0.251 awrt 0.251                                                                                                                                               | A1       |         |
|                    |                                                                                                                                                                  |          | (2)     |
| (d)                | $X \sim Po(4.5)$ 4.5 may be implied                                                                                                                              | B1       |         |
|                    | $P(X \ge 1) = 1 - P(X = 0)$<br>= 1 - e^{-4.5}                                                                                                                    | M1       |         |
|                    | = 1 - 0.0111<br>= 0.9889 awrt 0.989                                                                                                                              | A1       | (3)     |
|                    |                                                                                                                                                                  |          | Total 8 |
|                    |                                                                                                                                                                  |          |         |
|                    |                                                                                                                                                                  |          |         |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| 4                  | Attempt to write down combinationsat least one seen $(5, 5, 5)$ $(5, 5, 10)$ and order $(10, 10, 5)$ and order $(10, 10, 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1<br>A1             |  |
|                    | (5,5,5), (10,5,5), (10,5,10), (5,10,10),<br>(5,10,5), (10,5,5), (10,5,10), (5,10,10),<br>(5,10,5), (10,5,5), (10,5,10), (5,10,10),<br>(5,10,5), (10,5,5), (10,5,10), (5,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,10,10),<br>(10,5,5), (10,5,5), (10,5,10),<br>(10,5,5), (10,5,5), (10,5,10),<br>(10,5,5), (10,5,5), (10,5,10),<br>(10,5,5), (10,5,5), (10,5,10), (5,10,10),<br>(10,10,10),<br>(10,5,10), (10,5,5), (10,5,10), (5,10,10),<br>(10,5,10), (10,5,10), (5,10,10),<br>(10,5,10), (10,5,10), (5,10,10),<br>(10,5,10), (10,5,10), (5,10,10),<br>(10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), (10,5,10), | A1                   |  |
|                    | median 5 and 10<br>Median = 5 $P(M = m) = \left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$ add at least two prob<br>using <sup>1</sup> / <sub>4</sub> and <sup>3</sup> / <sub>4</sub> .<br>identified by having<br>same median of 5 or 10<br>Allow no 3 for M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1<br>M1 A1          |  |
|                    | Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1<br>(7)<br>Total 7 |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |

| Question<br>Number | Scheme                                                                                                                    |                                             |                | Marks    |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|----------|--|
| 5(a)               | If $X \sim B(n,p)$ and<br>n is large, $n > 50p$ is small, $p < 0.2then X can be approximated by Po(np)$                   |                                             | B1<br>B1       | (2)      |  |
| (b)                | P(2 consecutive calls) = $0.01^2$<br>= 0.0001                                                                             |                                             | M1<br>A1       | (2)      |  |
| (c)                | <i>X</i> ~B(5, 0.01)                                                                                                      | may be implied                              | B1             |          |  |
|                    | P(X > 1) = 1 - P(X = 1) - P(X = 0)<br>= 1 - 5(0.01)(0.99) <sup>4</sup> - (0.99) <sup>5</sup><br>= 1 - 0.0480298 - 0.95099 |                                             | M1             |          |  |
|                    | = 0.00098                                                                                                                 | awrt 0.00098                                | A1             | (3)      |  |
| (d)                | $X \sim B(1000, 0.01)$<br>Mean = $np = 10$<br>Variance = $np(1 - p) = 9.9$                                                | may be implied by correct mean and variance | B1<br>B1<br>B1 | (3)      |  |
| (e)                | $X \sim \text{Po}(10)$                                                                                                    |                                             |                |          |  |
|                    | $P(X > 6) = 1 - P (X \le 6)$<br>= 1 - 0.1301<br>= 0.8699                                                                  | awrt 0.870                                  | M1<br>A1       |          |  |
|                    |                                                                                                                           |                                             |                | (2)      |  |
|                    |                                                                                                                           |                                             |                | Total 12 |  |
|                    |                                                                                                                           |                                             |                |          |  |
|                    |                                                                                                                           |                                             |                |          |  |
|                    |                                                                                                                           |                                             |                |          |  |
|                    |                                                                                                                           |                                             |                |          |  |
|                    |                                                                                                                           |                                             |                |          |  |

| Question<br>Number |                                                                                                                                                                 | Scheme                                                                                               |                                   | Marks                |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|
| 6                  | $\label{eq:constraint} \begin{array}{l} \underline{\text{One tail test}} \\ \underline{\text{Method 1}} \\ H_{\text{o}}: p = 0.2 \\ H_{1}: p > 0.2 \end{array}$ |                                                                                                      |                                   | B1<br>B1             |
|                    | $X \sim B(5, 0.2)$                                                                                                                                              | may                                                                                                  | be implied                        | M1                   |
|                    | $P(X \ge 3) = 1 - P(X \le 2)$<br>= 1 - 0.9421                                                                                                                   | $\begin{bmatrix} P(X \ge 3) = 1 - 0.9421 = 0.0579 \\ P(X \ge 4) = 1 - 0.9933 = 0.0067 \end{bmatrix}$ | att P( $X \ge 3$ ) P( $X \ge 4$ ) | M1                   |
|                    | = 0.0579                                                                                                                                                        | $\operatorname{CR} X \ge 4$                                                                          | awrt 0.0579                       | A1                   |
|                    | 0.0579 > 0.05                                                                                                                                                   | $3 \le 4$ or 3 is not in critical region of                                                          | r 3 is not significant            | M1                   |
| -                  | (Do not reject H <sub>0</sub> .) There is in<br>there is an increase in the nu<br><b>Or</b> Linda's claim is not justi                                          | insufficient evidence at the 5% signi<br>umber of times the taxi/driver is late.<br>ified            | ficance level that                | B1<br>(7)<br>Total 7 |
|                    | $\label{eq:method_linear} \begin{array}{l} \underline{\text{Method 2}} \\ H_{o}: p = 0.2 \\ H_{1}: p > 0.2 \end{array}$                                         |                                                                                                      |                                   | B1<br>B1             |
|                    | $X \sim B(5, 0.2)$                                                                                                                                              | may                                                                                                  | be implied                        | M1                   |
|                    | P(X < 3) =                                                                                                                                                      | [P(X < 3) = 0.9421]<br>P(X < 4) = 0.9933                                                             | att P(X < 3) $P(X < 4)$           |                      |
|                    | 0.9421                                                                                                                                                          | $\operatorname{CR} X \ge 4$                                                                          | awrt 0.942                        | M1A1                 |
|                    | 0.9421 < 0.95                                                                                                                                                   | $3 \le 4$ or 3 is not in critical region or                                                          | 3 is not significant              | M1                   |
|                    | (Do not reject H <sub>0</sub> .) There is in<br>there is an increase in the nu<br><b>Or</b> Linda's claim is not justi                                          | insufficient evidence at the 5% signi<br>umber of times the <u>taxi/driver is late.</u><br>ified     | ficance level that                | B1 (7)               |
|                    |                                                                                                                                                                 |                                                                                                      |                                   |                      |

| Two tail test<br>Method 1                                                                                            |                                                                                                |                                   | B1       |     |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------|----------|-----|
| $H_o: p = 0.2$<br>$H_1: p \neq 0.2$                                                                                  |                                                                                                |                                   | B0       |     |
| $X \sim X \sim B(5, 0.2)$                                                                                            |                                                                                                | may be implied                    | M1       |     |
| $P(X \ge 3) = 1 - P(X \le 2)$<br>= 1 - 0.9421                                                                        | $[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X > 4) = 1 - 0.9933 = 0.0067$                          | att P( $X \ge 3$ ) P( $X \ge 4$ ) | MII      |     |
| = 0.0579                                                                                                             | $\operatorname{CR} X \ge 4$                                                                    | awrt 0.0579                       | A1       |     |
| 0.0579 > 0.025                                                                                                       | $3 \le 4$ or 3 is not in critical region or 3                                                  | 3 is not significant              | D1       |     |
| (Do not reject $H_{0.}$ ) There is in<br>there is an increase in the nu<br><b>Or</b> Linda's claim is not justi      | nsufficient evidence at the 5% signif<br>mber of times the <u>taxi/driver is late.</u><br>fied | icance level that                 | DI       | (7) |
| Method 2                                                                                                             |                                                                                                |                                   | B1<br>B0 |     |
| $H_0: p = 0.2$<br>$H_1: p \neq 0.2$                                                                                  |                                                                                                |                                   | M1       |     |
| $X \sim X \sim B(5, 0.2)$                                                                                            |                                                                                                | may be implied                    |          |     |
| P(X < 3) =                                                                                                           | [P(X < 3) = 0.9421]<br>P(X < 4) = 0.9933                                                       | att P(X < 3) $P(X < 4)$           |          |     |
| 0.9421                                                                                                               | $\operatorname{CR} X \ge 4$                                                                    | awrt 0.942                        | M1A1     |     |
| 0.9421 < 0.975                                                                                                       | $3 \le 4$ or 3 is not in critical region or                                                    | 3 is not significant              | M1       |     |
| Do not reject H <sub>0</sub> . There is in<br>there is an increase in the nu<br><b>Or</b> Linda's claim is not justi | sufficient evidence at the 5% signific<br>mber of times the taxi/driver is late.<br>fied       | ance level that                   | B1       | (7) |
| Special Case<br>If they use a probability of<br>A0 M1 B1.<br>NB they must attempt to wo                              | $\frac{1}{7}$ throughout the question they may pork out the probabilities using $\frac{1}{7}$  | gain B1 B1 M0 M1                  |          |     |

| Question<br>Number | Scheme                                                                                                                                                                                                        |                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 7(a) i<br>ii       | If $X \sim B(n,p)$ and<br>n is large or $n > 10$ or $np > 5$ or $nq > 5p$ is close to 0.5 or $nq > 5$ and $np > 5then X can be approximated by N(np,np(1-p))mean = npvariance = np(1-p)must be in terms of p$ | B1<br>B1<br>(2)<br>B1<br>B1 |
|                    |                                                                                                                                                                                                               | (2)                         |
| (b)                | $X \sim N (60, 58.2) \text{ or } X \sim N (60, 7.63^2) $ $P(X \ge 40) = P(X > 39.5) $ $( (20.5 + 60) ) $ $( (20.5 + 60) ) $ $( (20.5 + 60) ) $                                                                | B1, B1<br>M1                |
|                    | $= 1 - P\left(z < \pm \left(\frac{39.5 - 60}{\sqrt{58.2}}\right)\right)$ standardising 39.5 or 40 or 40.5 and their µ and σ<br>= 1 - P(z < -2.68715)                                                          | M1                          |
|                    | = 0.9965 allow answers in range 0.996 – 0.997                                                                                                                                                                 | A1dep on<br>both M          |
| (c)                | E(X) = 60 may be implied or ft from part (b)                                                                                                                                                                  | (5)<br>B1ft                 |
|                    | Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$<br>= £19 940.                                                                                                                                    | M1<br>A1<br>(3)<br>Total 12 |
|                    |                                                                                                                                                                                                               |                             |
|                    |                                                                                                                                                                                                               |                             |
|                    |                                                                                                                                                                                                               |                             |

